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Modified Yang–Mills Theory and Electroweak
Interactions
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Since the Higgs boson of the standard electroweak model has not been detected
despite many experimental attempts, nonstandard electroweak models not
including the Higgs boson may be worthy of consideration; one of them is
proposed here. This new model of electroweak interactions is based on the
Yang–Mills theory completed by a nontrivial condition at infinity for the
Yang–Mills potentials corresponding to the zero-field intensities. It is shown that
within the framework of this model the three vector potentials of the Yang–Mills
theory allow one to describe both the Maxwell electromagnetic interactions and
the Fermi weak interactions and to obtain the known value of the Z 0 boson mass.

1. INTRODUCTION

Let us consider the Yang–Mills potentials Ak,n satisfying the equations
(Ryder, 1985)

­mF k,mn 1 g«klmF l,mnAm
m 5 (4p/c)Jk,n (1)

Fk,mn 5 ­mAk,n 2 ­nAk,m 2 g«klm Al,mAm,n (2)

where m, n 5 0, 1, 2, 3; k, l, m 5 1, 2, 3; Fk,mn is the Yang–Mills tensor of
field intensities, «klm is the antisymmetric tensor; «123 5 1; g is the coupling
constant; and Jk,n are three 4-dimensional vectors of current densities.

As is well known, Eqs. (1)–(2) are covariant under the following infini-
tesimal transformations:
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J k,n → J k,n 1 «klm J m,nul, Ak,n → Ak,n 1 «klm Am,nul 1 (1/g)­nuk (3)

where ul is a small angle of rotation of the three-dimensional vector (J 1,n,
J 2,n, J 3,n) about the l axis.

For transformations (3) we also have (Ryder, 1985)

F k,mn → F k,mn 1 «klmF m,mnul

(4)
(J 1,n)2 1 (J 2,n)2 1 (J 3,n)2 → (J 1,n)2 1 (J 2,n)2 1 (J 3,n)2

Consider spatial regions where there are no charged particles and hence
J k,n 5 0. As follows from (3), in these regions solutions Ak,n of Eqs. (1)–(2)
depend upon three arbitrary functions ul of space-time coordinates. Therefore,
in the regions where Jk,n 5 0 we can complete Eqs. (1)–(2) by the Lorentz
gauge for Ak,n:

­nAk,n 5 0 when J k,n 5 0 (5)

In the spatial region occupied by charged particles we have the three
equations of charge conservation,

­nJ k,n 5 0 (6)

It must be noted that the system of equations (1), (2), (5), and (6) is
covariant under the infinitesimal transformations (3) with ul 5 const.

Let us add a condition at infinity for the potentials Ak,n to Eqs. (1), (2),
(5), and (6). For the Yang–Mills field intensities F k,mn we have

F k,mn 5 0, r → ` (7)

where r 2 5 (x1)2 1 (x2)2 1 (x3)2 and x1, x2, x3 are Cartesian spatial coordinates.
Let us find nonzero constant potentials Ak,n which satisfy (7) and can

be limits of the potentials Ak,n in a finite spatial region situated sufficiently
far from the sources of the electroweak field. For these potentials we can write

Ak,n 5 Ak,n, r → `, Ak,n 5 const, o
3

k51
Ak,nAk

n Þ 0 (8)

From (2), (7), and (8) we find

«klm Al,mAm,n 5 0 (9)

Let us assume that A1,0 Þ 0. This can always be provided for the
nontrivial potentials Ak,n under consideration by their gauge rotation and the
choice of an inertial frame. Then for m 5 0 and k 5 2, 3 from (9) we get

A1,0A3,n 2 A3,0A1,n 5 0, A1,0A2,n 2 A2,0A1,n 5 0 (10)

i.e., A3,n 5 (A3,0 /A1,0)A1,n, A2,n 5 (A2,0 /A1,0)A1,n
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Putting

lk 5 Ak,0 /A1,0, bn 5 A1,n (11)

from (10) and (11) we have the equality

Ak,n 5 lkbn (12)

which is an obvious identity when k 5 1.
It is easy to show that the constant potentials Ak,n having form (12)

satisfy Eq. (9) for any indices k, m, n. This follows from the fact that the
tensor «klm is antisymmetric and therefore «klmlllm 5 0. Since Ak,n are numbers
satisfying Eq. (9), the potentials Ak,n 5 Ak,n satisfy Eq. (5) and condition (7)
at infinity.

Putting

lk 5 lka, bn 5 bn /a, a 5 (bmbm)1/2 (13)

and using (8) and (12), we come to the following condition for the potentials
Ak,n 5 Ak,n in a finite spatial region situated sufficiently far from the sources
of the electroweak field:

Ak,n 5 lkbn, r → `, (l1)2 1 (l2)2 1 (l3)2 5 L2, bnbn 5 1

(14)

where lk, bn, and L are some numbers. We will suppose that these numbers
are real. It must be noted that condition (14) at infinity is covariant under
Lorentz transformations of space-time coordinates.

As to the number L in (14), we regard it as a positive fundamental
constant of the physical vacuum in spatial regions situated sufficiently far
from the sources of the electroweak field. Then the condition (l1)2 1 (l2)2

1 (l3)2 5 L2 in (14) is covariant under the infinitesimal transformations (3)
with ul 5 const as well as the system of equations (1), (2), (5), and (6).

The system of equations (1), (2), (5), and (6) and condition (14) at
infinity can be regarded as a modified Yang–Mills theory. As will be shown
later, it can describe both electromagnetic and weak interactions and the
constant L of this theory can be connected with the Fermi constant of
weak interactions.

Let us first consider electromagnetic interactions. Then we put J 1,n Þ
0, J 2,n 5 J 3,n 5 0 and find the following solution of Eqs. (1)–(2):

A2,n 5 A3,n 5 0, F 2,mn 5 F 3,mn 5 0
(15)

F 1,mn 5 ­mA1,n 2 ­nA1,m, ­m F 1,mn 5 (4p/c)J1,n

which presents the classical Maxwell description of the electromagnetic field.
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Therefore, the Maxwell equations are a particular case of the Yang–Mills
equations

Consider now weak interactions in a small spatial region and represent
potentials Ak,n in the form

Ak,n 5 lkbn 1 uk,n (16)

where, as follows from (14), uk,n → 0 when r → `. For the considered weak
interactions we assume that .uk,n. ¿ L. Then from (1), (2), and (16) we
obtain the following linear equation for the small functions uk,n in which the
small expressions of the second order are neglected:

­m­muk,n 2 ­n­muk,m 2 g«klm(2llbm­mum,n 1 lmbn­mul,m 1 lmbm­nul,m)

2 g2lmbm(lkbnum,m 1 lmbmuk,n 2 lkbmum,n 2 lmbnuk,m) 5 (4p/c)J k,n,

lm [ lm (17)

2. DESCRIPTION OF Z0 BOSONS

Examine Eq. (17) for the Z0 boson at rest. Then we have

J k,n 5 0, uk,n 5 ak,n exp(2iMZ0c2t/") (18)

where ak,n 5 const, t is the time coordinate, and MZ0 is the mass at rest of
the Z 0 boson.

Since we consider a spherically symmetric problem and hence bn must
not depend on the choice of space axes, we have to put the following, taking
into account (14):

b0 5 61, b1 5 b2 5 b3 5 0 (19)

Puttting n 5 0, from (18) and (5) we find

ak,0 5 0 (20)

As follows from (18)–(20), Eq. (17) when n 5 0 is an evident identity
and when n 5 1, 2, 3 we obtain from (17)–(20) the following linear equations
for ak,n:

o
3

k51
ak,ndik 5 0, n 5 1, 2, 3, i, k 5 1, 2, 3 (21)

where the matrix D with the elements dik has the form
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D 5 (dik)

5 1
v2 1 g2(l2

2 1 l3
2) 2iggl3 2 g2l1l2 22iggl2 2 g2l1l3

22iggl3 2 g2l1l2 v2 1 g2(l1
2 1 l3

2) 2iggl1 2 g2l2l3

2iggl2 2 g2l1l3 22iggl1 2 g2l2l3 v2 1 g2(l1
2 1 l2

2)2 (22)

where

lk [ lk, v 5 Mz0c/", g 5 b0v, b0 5 61 (23)

In order to have nonzero solutions to the three linear equations (21) we
must put

det(D) 5 0 (24)

From (22)–(24), after calculating the determinant of the matrix D, we
obtain the following equation for the mass Mz0:

det(D) 5 v6 2 2g2(l1
2 1 l2

2 1 l3
2)v4 1 g4(l1

2 1 l2
2 1 l3

2)2v2 5 0

(25)

From (14), (23), and (25) we get

v2(v2 2 g2L2)2 5 0, L2 5 l1
2 1 l2

2 1 l3
2

(26)
lk [ lk, v 5 Mz0c/"

and for the mass Mz0 of the Z0 boson we find

Mz0 5 gL"/c (27)

3. WEAK FIELDS GENERATED BY NEUTRINOS

To connect later the constant L with the Fermi constant of weak interac-
tions, let us examine electroweak fields described by Eq. (17).

Let us multiply Eq. (17) by lk. Then, since the tensor «klm is antisymmetric
and hence «klmlkll 5 0, we easily get

­m­myn 2 ­n­mym 5 (4p/c)lkJ k,n, yn 5 lkuk,n, lk [ lk (28)

Multiplying now Eq. (17) by bn, taking it again into account that the
tensor «klm is antisymmetric, and using (14), we obtain

­m­mzk 2 bn­
n­muk,m 2 g«kim(llbm­mzm 1 lm­mul,m)

5 (4p/c)bnJ k,n zk 5 bnuk,n (29)

Consider the electron neutrino or muon neutrino. Then, since it is a
neutral particle, we impose the following condition on the neutrino potentials:
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uk,n 5 0 outside the neutrino where J k,n 5 0 (30)

From (28) and (30) we find that in the region occupied by the neutrino

lkJ k,n 5 0 (31)

because if (31) had not been fulfilled we would get from (28) that outside
the neutrino lkuk,n 5 yn Þ 0, contrary to (30).

From (28) and (31) we get

lkuk,n 5 yn 5 0 (32)

Since the mass of the neutrino is very small compared with the mass
Mz0 of the Z 0 boson, we have the following correlation for the dimension rn

of the region occupied by the neutrino, taking into account (27):

1/rn ¿ M/z0c/" 5 gL (33)

As follows from (33) and (14), we can neglect the linear terms with
respect to ll on the left of Eq. (17) as compared with the quadratic terms.
Therefore, from Eq. (17) we get the approximate equation

g2lmbm(lkbnum,m 1 lmbmuk,n 2 lkbmum,n 2 lmbnuk,m)

5 2(4p/c)J k,n (34)

From (32), (34), and (14) we have

uk,n 2 bnzk 5 24pJ k,n /cg2L2, zk 5 bnuk,n (35)

Using Eq. (6), from (35) we find

­nuk,n 5 bn­nzk (36)

Substituting (36) for ­muk,m and ­mul,m in (29) and taking it into account
that the tensor «klm is antisymmetric, we obtain

­m­mzk 2 bmbn­m­nzk 5 (4p/c)bnJ k,n (37)

From (37) and (30) we find that in the region occupied by the neutrino

bnJ k,n 5 0 (38)

because if (38) had not been fulfilled we would get from (37) that outside
the neutrino bnuk,n 5 zk Þ 0, contrary to (30).

From (37) and (38) we get

bnuk,n 5 zk 5 0 (39)

and from (35) and (39) we find the weak field potentials as follows:



Modified Yang–Mills Theory and Electroweak Interactions 2453

uk,n 5 24pJ k,n /cg2L2 (40)

From (31) and (38) we have that the obtained potentials (40) satisfy
correlations (32) and (39).

4. DETERMINATION OF CONSTANTS OF ELECTROWEAK
INTERACTION

Let us introduce three electroweak charges qk for particles taking part
in electroweak interactions and represent their current densities J k,n in the form

J k,n /c 5 qkI n (41)

where I n is a 4-dimensional vector proportional to the particle mass density
and the 4-dimensional vector of the particle velocity. We will assume that
for the particles generating the electrical field, such as the proton and electron,
the charge q1 coincides with the electrical charge and q2 5 q3 5 0. The
charges of neutrinos will be considered later.

Let us seek a correlation for the charges of a charged elementary particle.
This correlation must satisfy the following two properties:

1. The correlation must be covariant under transformations (3) preserv-
ing the Yang–Mills equations.

2. The charges q1 5 6ep , q2 5 q3 5 0 corresponding to the proton and
electron, where ep is the proton charge, must satisfy the correlation.

Taking into account (4), we find the following equality that fulfills the
two properties:

q1
2 1 q2

2 1 q3
2 5 ep

2 (42)

Consider neutrinos. Since they are neutral particles having weak interac-
tions with the electron, we assume that they have two charges q1, q2 or q1,
q3 neutralizing each other, namely

q1 5 2q2, q3 5 0 or q1 5 2q3, q2 5 0 (43)

Then from (42) and (43) we get

q1 5 6221/2ep , q2 5 2q1, q3 5 0 or q2 5 0, q3 5 2q1

(44)

We assign the first case of (44), q2 5 2q1, to the electron neutrino, and
the second case, q3 5 2q1, to the muon neutrino.

Let us turn now to the Dirac equation for a fermion with the charges
q1, q2, q3. It can be represented in the generalized form
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i" ­C/­t 5 [cal(i" ­l 2 qk Ak,l/c) 1 g0mc2 1 qk Ak,0]C,

al 5 g0gl, l 5 1, 2, 3 (45)

where C is four wave functions of the fermion, gn are the Dirac matrices,
m is the fermion mass at rest, and Ak,v are electroweak field potentials.

Consider the gauge transformations (3) not changing the fermion current
densities J k,n. Then from (3) and (41) in the region occupied by the fermion
we have

ul 5 hql, J k,n → J k,n,
(46)

Ak,n → Ak,n 1 εklmhqlAm,n 1 (1/g)qk­nh, ql [ ql

Taking into account that εklmqkql 5 0, from (45) and (46) we have the
following gauge transformation not changing the fermion state:

qk Ak,n → qk Ak,n 1 (1/g)qk­
nuk,

(47)
C → C exp(2iqkuk/"cg), uk 5 hqk

It must be noted that in Rabinowitch (1996) a generalization for nucleons
of the Dirac equation was proposed which describes their quark structure
and anomalous magnetic moments. Consequently, for better description of
the proton and neutron the Dirac equation should be replaced by this general-
ization of it.

The potentials Ak,n in (45) are represented by formula (16). As to their
constant part lkbn, it can be removed in (45) by the gauge transformation C
→ C exp(iqklkbnxn/c"), where xn are the space-time coordinates in (45).
Therefore, from (16) and (45) we find that the Hamiltonian of interaction
Hint has the form (Bjorken and Drell, 1964)

Hint 5 qkIvuk,n, In 5 CgnC, C 5 C+g0 (48)

where Jk,n 5 cqkIn are current densities and C+ is the Hermitian conjugate
of C.

For the electron charges we have q1 5 2ep , q2 5 q3 5 0. Consider the
electron in the weak field of its antineutrino. Since in this case the energy
of interaction is positive, from (44), (48), (40), and (41) we get that for the
antineutrino q1 5 2q2 5 221/2 ep , q3 5 0.

Therefore, from (40), (41), and (48) we find that the Hamiltonian of
interaction of the electron and antineutrino has the form

Hint 5 221/24p e2
p Im

(e)Im( nY) /g2L2 (49)

where the indices (e) and (nY) correspond to the electron and its antineu-
trino, respectively.
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In the considered case the Hamiltonian of interaction can be represented
in the form (Ryder, 1985)

Hint 5 221/2GFIm
(e)Im( nY), GF 5 1025"3/cm2

p (50)

where GF is the Fermi constant and mp is the mass at rest of the proton.
Therefore, comparing (49) and (50), we get the equality

GF 5 1025"3/cm2
p 5 4p(ep /gL)2 (51)

From (51) and (27) we find

1025"3/cm2
p 5 4p(ep"/Mz0c)2 (52)

Equality (52) gives the following value of the mass at rest Mz0 of the
Z 0 boson:

Mz0 5 200mp(10p e2
p /"c)1/2 5 89.8 GeV (53)

As is seen from (53), the obtained theoretical value of the mass Mz0 of
the Z 0 boson accords with its experimental value (Ryder, 1995).

As is well known, the mass MW of W 6 bosons is approximately equal
to 80 GeV. The difference between the masses of Z 0 and W 6 bosons can be
explained by the availability of the electric field energy of the latter.

Consider now the connection between the constants g and ep. For this
purpose let us examine the electron described by the Dirac equation (45) when
the electroweak potentials Ak,n are subject to the gauge transformation (46).

Since for the electron q1 5 2ep , q2 5 q3 5 0, from (46) we get

A1,n → A1,n 1 (1/g)­nu1, A2,n → A2,n 2 A3,nu1,
(54)

A3,n → A3,n 1 A2,nu1

where u1 is a small angle of the rotation of the two-dimensional vector (A2,n,
A3,n) about its origin.

Making such rotation N times by the small angle u1/N, where N is a
large number, we easily generalize transformation (54) for an arbitrary angle
u1 of the rotation of the two-dimensional vector (A2,n, A3,n) about its origin
as follows:

A1,n → A1,n 1 (1/g)­nu1

A2,n → A2,n cos u1 2 A3,n sin u1 (55)

A3,n → A3,n cos u1 1 A2,n sin u1

For the electron wave function C from (47) we get the gauge
transformation
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Cu1 5 C0 exp(iepu1/"cg) (56)

where Cu1 is the wave function C corresponding to the angle u1 in (55).
Let us assume that in the spatial region occupied by an electron at rest

the angle u1 slowly changes from the constant value u1 5 0 to the constant
value u1 5 2p. Then, as follows from (55), at two moments when u1 5 0
and when u1 5 2p, the potentials Ak,n are the same. Since these potentials
determine the wave functions of the electron under consideration, we come
to the conclusion that at the two moments when u1 5 0 and u1 5 2p the
wave functions C0 and C2p are also the same. Hence, taking into account
(56), we find

C2p 5 C0 exp(2piep /"cg) 5 C0 (57)

From (57) we easily get the following formula for the elementary
charge ep:

ep 5 "cg (58)

Formula (58) explains the existence of the elementary charge ep since
in it this charge is determined by the fundamental constants ", c, and g and
gives the value ep /"c of the constant g.

From (51) and (58) we find the value of the constant L:

L 5 2"c(p/GF)1/2 5 1121mp(c3/")1/2 5 2.997 3 108 g1/2 cm1/2 /sec (59)
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