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Modified Yang—Mills Theory and Electroweak
I nteractions

A. S. Rabinowitchl?2

Received January 31, 2000

Since the Higgs boson of the standard electroweak model has not been detected
despite many experimental attempts, nonstandard electroweak models not
including the Higgs boson may be worthy of consideration; one of them is
proposed here. This new model of electroweak interactions is based on the
Yang—-Mills theory completed by a nontrivial condition at infinity for the
Yang—Mills potentials corresponding to the zero-field intensities. It is shown that
within the framework of this model the three vector potentias of the Yang—Mills
theory allow one to describe both the Maxwell electromagnetic interactions and
the Fermi weak interactions and to obtain the known value of the Z° boson mass.

1. INTRODUCTION

Let us consider the Yang—Mills potentials A« satisfying the equations
(Ryder, 1985)

9,FE + gegF HUAT = (4m/c)Ie (1)
Fhw = guaky — guake — gey AwATY 2

wherew, v = 0,1, 2, 3; k |, m= 1, 2, 3; F** js the Yang—Mills tensor of
field intensities, ey, IS the antisymmetric tensor; 103 = 1; g is the coupling
constant; and J“* are three 4-dimensional vectors of current densities.

Asiswell known, Egs. (1)—(2) are covariant under the following infini-
tesimal transformations:
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Jk,v - Jk,v + SMme’Vel, Ak,v N Ak,v + SkImAm’vel + (:Ug)avek (3)

where ' is a small angle of rotation of the three-dimensional vector (3%,
Jzv, J3) about the | axis.
For transformations (3) we also have (Ryder, 1985)

Fk,uv - Fk,p,v + skImFm,uvel
(Jl,v)Z + (J2,v)2 + (J3,v)2 R (Jl,v)Z + (J2,v)2 + (J3,v)2

Consider spatia regions where there are no charged particles and hence
Jkv = 0. As follows from (3), in these regions solutions A" of Egs. (1)—(2)
depend upon three arbitrary functions 6' of space-time coordinates. Therefore,
in the regions where J* = 0 we can complete Egs. (1)—(2) by the Lorentz
gauge for Ak:

(4)

9,A» =0  when J =0 (5)

In the spatial region occupied by charged particles we have the three
equations of charge conservation,

9,J = 0 (6)

It must be noted that the system of equations (1), (2), (5), and (6) is
covariant under the infinitesimal transformations (3) with 6' = const.

Let us add a condition at infinity for the potentials A<’ to Egs. (1), (2),
(5), and (6). For the Yang—Mills field intensities F*** we have

Fk,p.v = U, [ - ®© (7)

wherer? = (x1)? + (x%)? + (x3)? and xt, X2, x3 are Cartesian spatial coordinates.

Let us find nonzero constant potentials A* which satisfy (7) and can
be limits of the potentials A in a finite spatial region situated sufficiently
far from the sources of the electroweak field. For these potentials we can write

3
Akv = Akv r - oo, Akv = congt, > AWAS # 0 (8)
k=1
From (2), (7), and (8) we find
EumAFA™ = 0 9)
Let us assume that A® # 0. This can aways be provided for the

nontrivial potentials A* under consideration by their gauge rotation and the
choice of an inertial frame. Then for w = 0 and k = 2, 3 from (9) we get

ALOA3Y — A3OALY = Q, ALOA2v — A20ALY = (10)
ie. A3 = (A3O/ALO)ALY, A2y = (A2O[ALO)ALY
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Putting
Ak = ARO/ALO By = A (11)
from (10) and (11) we have the equality
Akv = )_\kEv (12)

which is an obvious identity when k = 1.

It is easy to show that the constant potentials A having form (12)
satisfy EqQ. (9) for any indices k, w, v. This follows from the fact that the
tensor eym is antisymmetric and therefore g, ,A'\™ = 0. Since A* are numbers
satisfying Eq. (9), the potentials Ak* = Ak satisfy Eq. (5) and condition (7)
at infinity.

Putting

N=Na, B =pla a=(Ep” (13)

and using (8) and (12), we come to the following condition for the potentials
A = Akv in afinite spatial region situated sufficiently far from the sources
of the electroweak field:

Ak,v — )\ka, r - oo, ()\1)2 + ()\2)2 + ()\3)2 — AZ, Bva =1
(14)

where N, 87, and A are some numbers. We will suppose that these numbers
are real. It must be noted that condition (14) at infinity is covariant under
Lorentz transformations of space-time coordinates.

As to the number A in (14), we regard it as a positive fundamental
constant of the physical vacuum in spatial regions situated sufficiently far
from the sources of the electroweak field. Then the condition (A\1)? + (\?)?
+ (A\%)2 = AZ%in (14) is covariant under the infinitesimal transformations (3)
with 8' = const as well as the system of equations (1), (2), (5), and (6).

The system of equations (1), (2), (5), and (6) and condition (14) at
infinity can be regarded as a modified Yang—Mills theory. As will be shown
later, it can describe both electromagnetic and weak interactions and the
constant A of this theory can be connected with the Fermi constant of
weak interactions.

Let us first consider electromagnetic interactions. Then we put J1V #

0, J>¥ = J® = 0 and find the following solution of Egs. (1)—(2):
AZ,V — A3,v — 0, FZ,MV — F3,p,v =0
(15)
Flwv = geAlv — gvALR 9, Ft* = (4m/c)I™

which presents the classical Maxwell description of the el ectromagnetic field.
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Therefore, the Maxwell equations are a particular case of the Yang—Mills
equations

Consider now weak interactions in a small spatial region and represent
potentials A% in the form

Akv = \kgv + kv (16)

where, as follows from (14), u<* - Owhenr - . For the considered weak
interactions we assume that [u**| << A. Then from (1), (2), and (16) we
obtain the following linear equation for the small functions u* in which the
small expressions of the second order are neglected:

A*a, U — %0, U — gem(2N BRI, U™ + NMBYO, UM + AR, 9 ul)
— gZ}\mBH()\kaum,u + )\mBMuk,v — )\kB“Um'V — )\mBVUk’“) = (4’!T/C)Jk’v,
Am = A" (17)

2. DESCRIPTION OF Z° BOSONS
Examine Eq. (17) for the Z° boson at rest. Then we have
Jkv = Q, Uk = akv exp(—iMoct/h) (18)

where a* = congt, t is the time coordinate, and Mo is the mass at rest of
the Z° boson.

Since we consider a spherically symmetric problem and hence B* must
not depend on the choice of space axes, we have to put the following, taking
into account (14):

Bo==1, Bl=p2=p>=0 (19)
Puttting v = 0, from (18) and (5) we find
av=0 (20)

As follows from (18)—(20), Eq. (17) when v = 0 is an evident identity
and whenv = 1, 2, 3we obtain from (17)—(20) the following linear equations
for a:

3
kZl avdy=0 v=123 i,k=123 (21)

where the matrix D with the elements d,, has the form
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D = (dw)
? + PA\FZ + N 2igyAs — OPAh;  —2igyh; — 0P\A;
= —2igy\s — NN 0%+ PN+ NP 2igyh — OON\ohs | (22)
2igyh — ANy —2igyh — O\ @® + GNP+ \D)
where

D o = Myc/h, v = Bw, B0 = *1 (23)

In order to have nonzero solutions to the three linear equations (21) we
must put

det(D) = 0 (24)

From (22)—(24), after calculating the determinant of the matrix D, we
obtain the following equation for the mass M,0:

det(D) = 0® — 2g2(\12 + A% + NDo* + g* (A% + N2 + N\D%0w?> =0

(25)
From (14), (23), and (25) we get
0 w2 — A2 =0, A% = N2+ N2+ AP 2
M = NS o = Myoc/h
and for the mass M9 of the Z° boson we find
Mo = gAflc (27)

3. WEAK FIELDS GENERATED BY NEUTRINOS

To connect later the constant A with the Fermi constant of weak interac-
tions, let us examine electroweak fields described by Eq. (17).

Let usmultiply Eq. (17) by AX. Then, sincethetensor e, isantisymmetric
and hence gy A\' = 0, we easily get

o,y — oyt = (AmlONIKY, Y = AR, N =K (28)

Multiplying now Eq. (17) by B,, taking it again into account that the
tensor ey, is antisymmetric, and using (14), we obtain

99,2 — B,3"9, U — gegm(N'B*0,2™ + N9, U+
= (4mlc)B, I  Z = B,U (29)

Consider the electron neutrino or muon neutrino. Then, since it is a
neutral particle, weimpose the following condition on the neutrino potentials:
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U =0  outside the neutrino where J** = 0 (30)
From (28) and (30) we find that in the region occupied by the neutrino
ANJRY =0 (3D

because if (31) had not been fulfilled we would get from (28) that outside
the neutrino A, Uk = y* # 0, contrary to (30).
From (28) and (31) we get

MUY =y =0 (32)

Since the mass of the neutrino is very small compared with the mass
M,0 of the Z° boson, we have the following correlation for the dimension r,,
of the region occupied by the neutrino, taking into account (27):

Ur, < M/pclh = gA (33)

As follows from (33) and (14), we can neglect the linear terms with
respect to \' on the left of Eq. (17) as compared with the quadratic terms.
Therefore, from Eq. (17) we get the approximate equation

GPAnfB, (NBPU™ + NTBRUEY — NKBRU™ — AT

= —(4mlc)Ikv (39
From (32), (34), and (14) we have
uer — B¢ = —4mJ<v[cg?A?, = B,u” (35)

Using Eg. (6), from (35) we find
U = B,z (36)

Substituting (36) for 9,u“* and 9,u"* in (29) and taking it into account
that the tensor gy, is antisymmetric, we obtain

99,2 — B*P9,9,2 = (4m/c)B,I*" (37)
From (37) and (30) we find that in the region occupied by the neutrino
B, J =0 (38)

because if (38) had not been fulfilled we would get from (37) that outside
the neutrino B,u’ = Z # 0, contrary to (30).
From (37) and (38) we get

B U =Z =0 (39)
and from (35) and (39) we find the weak field potentials as follows:
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Uy = —4mJkv[cgPA? (40)

From (31) and (38) we have that the obtained potentials (40) satisfy
correlations (32) and (39).

4. DETERMINATION OF CONSTANTS OF ELECTROWEAK
INTERACTION

Let us introduce three electroweak charges g, for particles taking part
in electroweak interactions and represent their current densities J*” intheform

Jwic = qd” (41)

where IV is a 4-dimensional vector proportional to the particle mass density
and the 4-dimensional vector of the particle velocity. We will assume that
for the particles generating the electrical field, such asthe proton and electron,
the charge g, coincides with the electrical charge and g, = gz = 0. The
charges of neutrinos will be considered later.

Let us seek acorrelation for the charges of a charged elementary particle.
This correlation must satisfy the following two properties:

1. Thecorrelation must be covariant under transformations (3) preserv-
ing the Yang—Mills equations.

2. Thechargesq, = *¢&,, 0, = gz = 0 corresponding to the proton and
electron, where g, is the proton charge, must satisfy the correlation.

Taking into account (4), we find the following equality that fulfills the
two properties:
0’ + 07 + 4 = & (42)
Consider neutrinos. Since they are neutral particles having weak interac-
tions with the electron, we assume that they have two charges gy, g, or qs,
s heutralizing each other, namely
b= -0 gz3=0 or b= 03 =0 (43)
Then from (42) and (43) we get

th=*2"%6, ¢=-0 G=0 o =0 g=-0
(44)
We assign the first case of (44), g, = —q, to the electron neutrino, and
the second case, g; = —q;, to the muon neutrino.

Let us turn now to the Dirac equation for a fermion with the charges
01, O, Qs It can be represented in the generalized form
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ih oW/ot = [coy(it o' — qA/C) + vome? + g AP,
=%, 1=123 (45)

where ¥ is four wave functions of the fermion, y" are the Dirac matrices,
m is the fermion mass at rest, and A< are electroweak field potentials.

Consider the gauge transformations (3) not changing the fermion current
densities J**. Then from (3) and (41) in the region occupied by the fermion
we have

el — ”f]CIh Jk,v - Jk,v1

Ak,v Ak,v | ATV 1 kv, | = (46)
- + &yning + (Yg)g o™, q=q

Taking into account that £4,0g' = 0, from (45) and (46) we have the
following gauge transformation not changing the fermion state:

QA - gAY + (1/g)ged 6",

(47)
¥ ¥ exp(—igdhcg), 6k = na

It must be noted that in Rabinowitch (1996) ageneralization for nucleons
of the Dirac equation was proposed which describes their quark structure
and anomalous magnetic moments. Consequently, for better description of
the proton and neutron the Dirac equation should be replaced by this general -
ization of it.

The potentials A< in (45) are represented by formula (16). As to their
constant part \*gY, it can be removed in (45) by the gauge transformation ¥
- ¥ exp(igA B, x/ch), where x* are the space-time coordinates in (45).
Therefore, from (16) and (45) we find that the Hamiltonian of interaction
H;.: has the form (Bjorken and Drell, 1964)

Hint = qklvuk'“, IV = T,yvq/, T = \I’+VO (48)

where J** = cq,l” are current densities and W* is the Hermitian conjugate
of ¥,

For the electron charges we have g, = —e,, g, = g3 = 0. Consider the
electron in the weak field of its antineutrino. Since in this case the energy
of interaction is positive, from (44), (48), (40), and (41) we get that for the
antineutrino g, = —g, = 27 %2 e,, g3 = 0.

Therefore, from (40), (41), and (48) we find that the Hamiltonian of
interaction of the electron and antineutrino has the form

Hmt = 2_1/24’1T eﬁ |tLe)|H($)/ng2 (49)

where the indices (€) and (v) correspond to the electron and its antineu-
trino, respectively.
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In the considered case the Hamiltonian of interaction can be represented

in the form (Ryder, 1985)
Hint = 271/2G|:| tjé)l w(7) G|: = loiSﬁslcn'% (50)

where Gg is the Fermi constant and m, is the mass at rest of the proton.
Therefore, comparing (49) and (50), we get the equality

Gr = 10~ *13/cmg = 4m(e,/gA)? (52)
From (51) and (27) we find
10-%4%cmg = 4m(e,i/MoC)? (52)

Equality (52) gives the following value of the mass at rest Mo of the
Z° boson:

M, = 200my(10m e2/fic)2 = 89.8 GeV (53)

Asis seen from (53), the obtained theoretical value of the mass Mo of
the Z° boson accords with its experimental value (Ryder, 1995).

As is well known, the mass M,y of W= bosons is approximately equal
to 80 GeV. The difference between the masses of Z° and W* bosons can be
explained by the availability of the electric field energy of the latter.

Consider now the connection between the constants g and €,. For this
purpose et us examine the el ectron described by the Dirac equation (45) when
the electroweak potentials A are subject to the gauge transformation (46).

Since for the electron g, = —&,, @, = gz = 0, from (46) we get
Al,v R Al,v + (1/9)6"61, A2,v R A2,v _ A3,vel,
(54)
A3,v . A3,v + A2,vel

where 61 is asmall angle of the rotation of the two-dimensional vector (A%,
A3") about its origin.

Making such rotation N times by the small angle 6%/N, where N is a
large number, we easily generalize transformation (54) for an arbitrary angle
0 of the rotation of the two-dimensional vector (A2, A%") about its origin
as follows:

Al,v - Al,v + (ﬂg)avel
A2V _, A2Y cos 6 — A3 sin 6t (55)
A3 . A3Y cos 0! + A%V sin 91

For the electron wave function ¥ from (47) we get the gauge
transformation
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W = W, exp(ie,0'/hcg) (56)

where Wt is the wave function ¥ corresponding to the angle 6% in (55).

Let us assume that in the spatial region occupied by an electron at rest
the angle 6* dowly changes from the constant value 6! = 0 to the constant
value 6 = 2. Then, as follows from (55), at two moments when 6* = 0
and when 8! = 2, the potentials A“* are the same. Since these potentials
determine the wave functions of the electron under consideration, we come
to the conclusion that at the two moments when 6 = 0 and 6 = 27 the
wave functions ¥, and V,,. are also the same. Hence, taking into account
(56), we find

¥y, = W, exp(2migy/icg) = Vo (57)

From (57) we easily get the following formula for the elementary
charge &,

& = ficg (58)

Formula (58) explains the existence of the elementary charge e, since
in it this charge is determined by the fundamental constants 7, ¢, and g and
gives the value g,/Aic of the constant g.

From (51) and (58) we find the value of the constant A:

A = 2hic(m/Gp)YV? = 1121m,(c¥h)Y2 = 2.997 X 10° g¥2 cmY2/sec (59)
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